Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding Python's 2D Array Modification Behavior

  • vlogize
  • 2025-04-16
  • 1
Understanding Python's 2D Array Modification Behavior
Modifying 2D array Pythonpythonarrays
  • ok logo

Скачать Understanding Python's 2D Array Modification Behavior бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding Python's 2D Array Modification Behavior или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding Python's 2D Array Modification Behavior бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding Python's 2D Array Modification Behavior

Discover why modifying a `2D array` in Python impacts all elements, and learn the solution using NumPy for efficient array handling.
---
This video is based on the question https://stackoverflow.com/q/72585703/ asked by the user 'Asmita Poddar' ( https://stackoverflow.com/u/7295143/ ) and on the answer https://stackoverflow.com/a/72585739/ provided by the user 'Ftagliacarne' ( https://stackoverflow.com/u/4470987/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Modifying 2D array Python

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding Python's 2D Array Modification Behavior: A Simple Guide

When working with 2D arrays in Python, it’s not uncommon to encounter unexpected behavior, especially when modifying elements. A common scenario arises when you initialize a 2D array and then notice that changes to one element affect others. This guide will break down the reasons behind this occurrence and provide a solution using a more reliable method.

The Problem: Unexpected Modifications in a 2D Array

Consider the code snippet below, where a 2D array is created:

[[See Video to Reveal this Text or Code Snippet]]

At first glance, one might think they have created a standard 2D array with four rows and three columns. However, the issue arises when you attempt to modify a specific element:

[[See Video to Reveal this Text or Code Snippet]]

Surprisingly, all rows reflect the same modification! So, why does this happen? Let’s explore.

The Explanation: Shared References in Python

When you create the dp array using the code [[0] * 3] * 4, Python doesn’t create independent lists for each row. Instead, it creates one list and then references it multiple times. This means:

All rows point to the same list object in memory.

Any modification to one row affects all rows because they reference the same object.

This can cause significant confusion and unintended side effects in your programs when working with 2D arrays.

The Solution: Use NumPy for Better Array Management

To overcome this limitation and properly manage 2D arrays, it's advisable to use the NumPy library, which is specifically designed for numerical and matrix operations in Python. Here’s how you can do it:

Step 1: Install NumPy (if not already installed)

If you haven’t already installed NumPy, you can do so using pip:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Create a 2D Array Using NumPy

Instead of using the native Python list, you can create a 2D array with NumPy as follows:

[[See Video to Reveal this Text or Code Snippet]]

Now, each element in this array is independent, meaning you can modify an individual element without affecting others.

Step 3: Modify Elements Safely

You can now safely modify a specific element:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Understanding how Python handles 2D arrays can save you a lot of time and frustration. Using lists in this way can lead to unexpected behavior due to shared references. By adopting tools like NumPy, you can create truly independent arrays and perform complex calculations efficiently.

Now that you are aware of the potential pitfalls in working with 2D arrays in Python, you can confidently create and manipulate them without worrying about unintended modifications. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]