Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Extracting Data Efficiently from Excel: Openpyxl for Python

  • vlogize
  • 2025-03-29
  • 4
Extracting Data Efficiently from Excel: Openpyxl for Python
Read Excel File Using Openpyxlpythonexcelopenpyxl
  • ok logo

Скачать Extracting Data Efficiently from Excel: Openpyxl for Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Extracting Data Efficiently from Excel: Openpyxl for Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Extracting Data Efficiently from Excel: Openpyxl for Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Extracting Data Efficiently from Excel: Openpyxl for Python

Learn how to read Excel files and save rows as a list using `openpyxl` in Python with efficient methods. Get insights and better practices for handling Excel data.
---
This video is based on the question https://stackoverflow.com/q/71074023/ asked by the user 'hallopeterswelt' ( https://stackoverflow.com/u/18038006/ ) and on the answer https://stackoverflow.com/a/71074491/ provided by the user 'jezza_99' ( https://stackoverflow.com/u/12664040/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Read Excel File Using Openpyxl

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Extracting Data Efficiently from Excel: Openpyxl for Python

Working with Excel files in Python can often feel daunting, especially when you're trying to manipulate and extract data. One of the most popular libraries for handling Excel files is openpyxl. In this guide, we’ll explore how to read an Excel file and save each row into a list using openpyxl, providing you with both a basic solution and a more optimized approach.

Understanding the Problem

You have an Excel file (in this case, "Shop.xlsx") and you want to extract data from it. Specifically, your goal is to read each row and save its contents into a list. The initial approach provided worked, but there are more efficient methods available that can save you time and keystrokes.

Initial Approach

The initial code you provided used the following method:

[[See Video to Reveal this Text or Code Snippet]]

While this method does work, it only processes the length of column A and can be inefficient, especially with larger datasets. Let’s break down a more efficient way to achieve the same goal.

An Improved Solution

To enhance the performance and readability of your code, openpyxl provides an excellent method called iter_rows() that simplifies the process of iterating through rows in an Excel sheet. Here’s how you can implement it:

Using iter_rows()

Instead of manually iterating through the columns, you can leverage the iter_rows() method to handle the operation in a single line. Here’s the improved code:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code

ws.iter_rows(): This function iterates over the rows in the worksheet.

max_col=2: This parameter tells the function to consider only the first two columns (A and B) while retrieving data.

values_only=True: This option returns the cell values instead of cell objects, making it easier to directly build lists from them.

Advantages of Using iter_rows()

Simplicity: Less code means easier maintenance and readability.

Performance: This method can handle larger datasets more efficiently compared to manually iterating through columns.

Flexibility: You can easily modify the max_col or adapt the code to include more columns if needed.

Important Considerations

While the iter_rows() method is highly efficient, it's essential to be aware of certain aspects:

The maximum column length recognized by openpyxl can be impacted by None values in the cells. If there are empty rows or columns where data is expected, it might limit your extraction to those boundaries.

Ensure you always specify the maximum number of columns you want to read if your data spans multiple columns, otherwise, it might include unintended empty rows or columns.

Conclusion

Using openpyxl to read Excel files can greatly streamline your data extraction processes in Python. By leveraging iter_rows() along with appropriate parameters, you can turn a potentially cumbersome task into an efficient and clear-cut operation. Next time you find yourself working with Excel files, consider this enhanced method for a better experience.

Feel free to reach out if you have further questions on manipulating Excel data with Python or if there's a specific topic you'd like to explore next!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]