Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Resize Grayscale Images by Summing Pixel Intensities in Python

  • vlogize
  • 2025-09-06
  • 1
How to Resize Grayscale Images by Summing Pixel Intensities in Python
Resize grayscale image by summing pixel intensities for every 2x2 gridpython 3.xnumpyimage processingpython imaging libraryscikit image
  • ok logo

Скачать How to Resize Grayscale Images by Summing Pixel Intensities in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Resize Grayscale Images by Summing Pixel Intensities in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Resize Grayscale Images by Summing Pixel Intensities in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Resize Grayscale Images by Summing Pixel Intensities in Python

Learn how to efficiently resize grayscale images in Python by summing pixel intensities in 2x2 grids using the `skimage` library.
---
This video is based on the question https://stackoverflow.com/q/63237136/ asked by the user 'Debaditya Chatterjee' ( https://stackoverflow.com/u/14044472/ ) and on the answer https://stackoverflow.com/a/63238436/ provided by the user 'Debaditya Chatterjee' ( https://stackoverflow.com/u/14044472/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Resize grayscale image by summing pixel intensities for every 2x2 grid

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
A Guide to Resizing Grayscale Images by Summing Pixel Intensities

In the world of image processing, resizing images while maintaining their quality is a common challenge, especially when dealing with large datasets. If you’re working with grayscale images, such as 16-bit TIFF images sized at 2048 x 2048 pixels, you might find yourself needing to reduce their size to 1024 x 1024 pixels. A popular method for this task involves summing pixel intensities in 2x2 grids. If you’re looking for a solution in Python, you’ve come to the right place.

The Problem

You have a dataset of 36,000 grayscale images that are each 2048 x 2048 pixels, and you need to resize them to 1024 x 1024 pixels. The challenge lies in summing the intensities of each 2x2 pixel grid to create a new pixel intensity in the resized image. While ImageJ provides an effective method for this (Image Transform Bin, method = Sum), you want to replicate this functionality using Python libraries but haven’t found a suitable solution.

The Solution: Using block_reduce from skimage.measure

Fortunately, there is a straightforward way to achieve this using the skimage library in Python. The block_reduce function from skimage.measure is designed for this scenario. Below, I will guide you through the steps required to resize your images by summing pixel intensities.

Step-by-Step Instructions

Import Required Libraries: You'll need to import numpy for numerical operations and block_reduce from skimage.measure for reducing the image size.

[[See Video to Reveal this Text or Code Snippet]]

Load the Original Image: Read your original 2048 x 2048 image using tiffio. Make sure to provide the correct file path.

[[See Video to Reveal this Text or Code Snippet]]

Resize the Image: Use block_reduce to sum the pixel values in 2x2 blocks. This function allows you to specify the block size and the aggregation function—in this case, np.sum.

[[See Video to Reveal this Text or Code Snippet]]

Adjust Data Type: Since Numpy arrays default to 64-bit floating-point, you need to convert the resulting image back to an unsigned 16-bit format to preserve the original quality.

[[See Video to Reveal this Text or Code Snippet]]

Save the Resized Image: Finally, save your newly resized image using tiffio. Provide the desired save path and filename.

[[See Video to Reveal this Text or Code Snippet]]

Full Code Example

Here’s the complete code snippet that incorporates all the steps mentioned above:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By utilizing the block_reduce function from the skimage library, you can easily resize grayscale images by summing pixel intensities in 2x2 grids. This method is efficient and well-suited for working with large datasets of images. Whether you're preparing data for machine learning or simply need a different image resolution, this approach will serve you well. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]