Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Convert DateTime Format in Pandas: A Simple One-Line Solution

  • vlogize
  • 2025-05-27
  • 0
How to Convert DateTime Format in Pandas: A Simple One-Line Solution
Configurate datetime '%d-%m-%Y %H:%M' to '%d/%m/%Y %H:%M' into one-line codepythonpandasdatetimestrftime
  • ok logo

Скачать How to Convert DateTime Format in Pandas: A Simple One-Line Solution бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Convert DateTime Format in Pandas: A Simple One-Line Solution или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Convert DateTime Format in Pandas: A Simple One-Line Solution бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Convert DateTime Format in Pandas: A Simple One-Line Solution

Learn how to efficiently convert your DataTime format from '%d-%m-%Y %H:%M' to '%d/%m/%Y %H:%M' in Pandas with a concise one-liner.
---
This video is based on the question https://stackoverflow.com/q/69461480/ asked by the user 'Sultry T.' ( https://stackoverflow.com/u/10101817/ ) and on the answer https://stackoverflow.com/a/69461723/ provided by the user 'Muhammad Hassan' ( https://stackoverflow.com/u/10720723/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Configurate datetime '%d-%m-%Y %H:%M' to '%d/%m/%Y %H:%M' into one-line code

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Convert DateTime Format in Pandas: A Simple One-Line Solution

When working with data in Python, especially with time series data using libraries like Pandas, formatting your datetime fields correctly is crucial. Whether you're preparing data for analysis or exporting it to CSV for reporting, you may encounter various date formats. A common task is to convert a datetime string from one format to another. For example, you might have a datetime formatted as '%d-%m-%Y %H:%M' and need to convert it to '%d/%m/%Y %H:%M'. This guide will guide you through a simple solution to achieve this, particularly focusing on a one-liner code approach for efficiency.

Problem Overview

Imagine you have a large dataset with a datetime column that looks like this:

[[See Video to Reveal this Text or Code Snippet]]

This initial step is crucial for ensuring that the Date_Time column is in the correct datetime format for further analysis. However, later on, you realize that the format of the datetime string needs to change to '%d/%m/%Y %H:%M' for your csv files.

The Challenge

You might face an issue when trying to format your dates while also filtering your dataset for specific years. An example code snippet that encounters an error looks like this:

[[See Video to Reveal this Text or Code Snippet]]

The error message:

[[See Video to Reveal this Text or Code Snippet]]

This occurs because you're trying to directly apply .dt on a DataFrame instead of a Series.

The Solution

Here’s a straightforward solution that avoids this error while meeting your formatting needs. Follow the steps below to see how you can effectively convert the datetime format with a clear approach.

Step-by-Step Conversion

Filter the DataFrame: First, create a subset of your DataFrame specifically for the year you want to work with.

[[See Video to Reveal this Text or Code Snippet]]

Format the DateTime: Now, format the Date_Time column properly using the strftime method.

[[See Video to Reveal this Text or Code Snippet]]

Export to CSV: Finally, export the newly formatted DataFrame to a CSV file.

[[See Video to Reveal this Text or Code Snippet]]

This code change ensures that the datetime format is correctly applied to each year’s subset before exporting.

Summary of the Correct Code

Here’s the full corrected code block for reference:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Efficiently manipulating datetime formats in Pandas is a critical skill for data analysts and scientists alike. By understanding how to correctly use the strftime method and the importance of filtering your DataFrame correctly, you can avoid common pitfalls and ensure your data is well-prepared. Armed with this one-liner solution, you're ready to format your datetime fields with precision.

With this guide, you should now find it easy to adjust datetime formats in your data processing routines. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]