Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть IDS Seminar - Best Arm Identification in Stochastic Bandits: Optimality, Complexity, and Robustness

  • Institute of Data Science (IDS), NUS
  • 2023-01-15
  • 225
IDS Seminar - Best Arm Identification in Stochastic Bandits: Optimality, Complexity, and Robustness
  • ok logo

Скачать IDS Seminar - Best Arm Identification in Stochastic Bandits: Optimality, Complexity, and Robustness бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно IDS Seminar - Best Arm Identification in Stochastic Bandits: Optimality, Complexity, and Robustness или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку IDS Seminar - Best Arm Identification in Stochastic Bandits: Optimality, Complexity, and Robustness бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео IDS Seminar - Best Arm Identification in Stochastic Bandits: Optimality, Complexity, and Robustness

Abstract: In this talk, we will provide recent results on three aspects of best arm identification (BAI) in stochastic multi-armed bandit problems. First, we present the recent optimality results for the general parameterized family of distributions. Next, we present a computationally-efficient framework for the fixed confidence setting. Finally, we consider the settings in which the rewards are possibly contaminated and provide two algorithms, a gap-based algorithm and one based on successive elimination, for the sub-Gaussian settings.

Bio. Ali Tajer received B.Sc. and M.Sc. degrees in Electrical Engineering from Sharif University of Technology, an M.A. degree in Statistics, and a Ph.D. degree in Electrical Engineering from Columbia University. He is currently an Associate Professor of Electrical, Computer, and Systems Engineering at Rensselaer Polytechnic Institute. His research interests include mathematical statistics, statistical signal processing, and network information theory. His recent publications include an edited book entitled Advanced Data Analytics for Power Systems (Cambridge University Press, 2020). He received an NSF CAREER award in 2016 and AFRL Faculty Fellowship in 2019. He is currently serving as an Associate Editor for the IEEE Transactions on Information Theory and the IEEE Transactions on Signal Processing. In the past, he has served as an Editor for the IEEE Transactions on Communications, an Editor for the IEEE Transactions on Smart Grid, a Guest Editor for the IEEE Signal Processing Magazine, and a Guest Editor-in-Chief for the IEEE Transactions on Smart Grid.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]