Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Transforming a DataFrame Column to Multiple Columns with Binary Values in pandas

  • vlogize
  • 2025-03-29
  • 1
Transforming a DataFrame Column to Multiple Columns with Binary Values in pandas
How to transform a column with 3 possible values into 3 columns with 0 if the value is absent and 1pandas
  • ok logo

Скачать Transforming a DataFrame Column to Multiple Columns with Binary Values in pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Transforming a DataFrame Column to Multiple Columns with Binary Values in pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Transforming a DataFrame Column to Multiple Columns with Binary Values in pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Transforming a DataFrame Column to Multiple Columns with Binary Values in pandas

Learn how to efficiently convert a single column with multiple categorical values into separate columns filled with binary values in `pandas`.
---
This video is based on the question https://stackoverflow.com/q/70710205/ asked by the user 'spergynerd' ( https://stackoverflow.com/u/12393685/ ) and on the answer https://stackoverflow.com/a/70710370/ provided by the user 'sammywemmy' ( https://stackoverflow.com/u/7175713/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to transform a column with 3 possible values into 3 columns with 0 if the value is absent and 1 if it is present

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Transforming a DataFrame Column to Multiple Columns with Binary Values in pandas

Working with DataFrames in Python's pandas library can provide powerful data manipulation capabilities. However, sometimes we encounter situations where we need to transform our data structure to better suit our analysis needs. One common scenario is needing to convert a single column containing multiple categorical values into multiple binary indicator columns.

In this guide, we'll walk through how to achieve this transformation, where a column with three possible values (let’s say x, y, and z) is transformed into three separate columns each containing a 0 or 1 indicating the absence or presence of these values.

The Problem

Suppose you have a DataFrame structured as follows:

col_1col_2col_31Aabcx2Aabcy3Aabcz4Bbcdx5Bbcdz6Ccdex7DdefyIn this DataFrame, col_3 contains three distinct values: x, y, and z. Our goal is to convert col_3 into three separate columns: col_x, col_y, and col_z, where each of these new columns indicates with 1 if the corresponding value is present and 0 if absent.

Here's how the desired output looks:

col_1col_2col_xcol_ycol_z1Aabc1112Bbcd1013Ccde1004Ddef010The Solution

To solve this problem, we will use the following steps:

Use pd.get_dummies(): This function will help us convert categorical variable(s) into dummy/indicator variables.

Group By the necessary columns: After creating the dummy columns, we will group by the other columns so that the data aligns properly.

Sum Up the Groups: This step will ensure that we aggregate the dummy columns correctly, allowing us to represent whether each category exists.

Let's break down the code implementation step by step:

Step 1: Create Dummy Variables

By utilizing pd.get_dummies(), we can convert col_3 into binary columns. Each unique value in col_3 will create a separate column.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Group By

Next, we need to group the DataFrame by col_1 and col_2 and sum the values of the new dummy columns.

[[See Video to Reveal this Text or Code Snippet]]

Final Output

Now, final_df will contain the desired structure:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

With just a few lines of code, we successfully transformed a single column with multiple categorical values into multiple binary indicator columns while keeping our DataFrame organized and readable. This technique can be exceptionally useful for preparing data for machine learning models, where numerical inputs are required.

If you have further transformations or questions regarding pandas, feel free to leave a comment below!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]