Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Optimizing Pandas groupby apply: A Faster Approach to Data Aggregation

  • vlogize
  • 2025-04-14
  • 0
Optimizing Pandas groupby apply: A Faster Approach to Data Aggregation
Pandas groupby apply is taking too much timepythonpandasdataframepandas groupby
  • ok logo

Скачать Optimizing Pandas groupby apply: A Faster Approach to Data Aggregation бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Optimizing Pandas groupby apply: A Faster Approach to Data Aggregation или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Optimizing Pandas groupby apply: A Faster Approach to Data Aggregation бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Optimizing Pandas groupby apply: A Faster Approach to Data Aggregation

Discover how to optimize your `Pandas groupby apply` function for better performance and faster data processing in Python.
---
This video is based on the question https://stackoverflow.com/q/68522154/ asked by the user 'Chinmay Das' ( https://stackoverflow.com/u/5989396/ ) and on the answer https://stackoverflow.com/a/68522415/ provided by the user 'Andrej Kesely' ( https://stackoverflow.com/u/10035985/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Pandas groupby apply is taking too much time

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Optimizing Pandas Groupby Apply: A Faster Approach to Data Aggregation

When working with large datasets in Python, using Pandas for data manipulation is common. However, you might occasionally find that operations like groupby followed by apply can become sluggish, especially with large DataFrames. This guide will address one such scenario and provide an optimized solution for better performance.

The Problem: Slow Execution Time

You may encounter a situation in which your Pandas code takes too long to execute, particularly when using groupby in combination with the apply method. Here's a sample of such a problematic code:

[[See Video to Reveal this Text or Code Snippet]]

In this code, a custom function f is defined to process user data, and the execution time becomes a concern. Let's break down the original logic and see how we can optimize it.

The Solution: Using Aggregation

Instead of using apply, we can streamline the operation by utilizing the agg method. agg allows for efficient aggregation across multiple columns using built-in functions, avoiding the overhead of applying a custom function row-by-row.

Here’s How to Optimize Your Code

Original Function Breakdown:

The custom function f was designed to extract various metrics per user, such as:

Maximum user age

Last visit date

Total sales sum

Average spend per visit

Optimized Code Using agg

By replacing the apply method with agg, we can achieve the same results but with better efficiency. Below is the optimized code:

[[See Video to Reveal this Text or Code Snippet]]

What This Code Does:

Group Data Efficiently: It groups the DataFrame by user_wid.

Aggregate Multiple Metrics: It uses the agg function to compute the maximum or sum for each of the required fields in one go.

Calculate Average Spend: After aggregating the necessary columns, it calculates the average spend per visit simply by dividing total sales by the number of visits.

Benefits of Using agg:

Faster Execution: Avoids the overhead of a custom function applied to each group.

Readability: The code is simpler and easier to read.

Less Memory Usage: Reduces the memory footprint as it avoids creating intermediate DataFrames.

Final Thoughts

Optimizing your Pandas code can lead to significant improvements in performance, especially when working with large datasets. By using built-in functions like agg instead of custom functions with apply, you can speed up your calculations and make your code more efficient.

If you find yourself grappling with slow executions in your data processing tasks, consider refactoring your code using this optimization strategy. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]