Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Christopher Bishop | Mappings and Meshes, connections between continuous and discrete geometry I

  • Harvard CMSA
  • 2021-05-11
  • 926
Christopher Bishop | Mappings and Meshes, connections between continuous and discrete geometry I
  • ok logo

Скачать Christopher Bishop | Mappings and Meshes, connections between continuous and discrete geometry I бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Christopher Bishop | Mappings and Meshes, connections between continuous and discrete geometry I или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Christopher Bishop | Mappings and Meshes, connections between continuous and discrete geometry I бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Christopher Bishop | Mappings and Meshes, connections between continuous and discrete geometry I

5/7/2021 FRG Workshop on Geometric Methods for Analyzing Discrete Shapes

Speaker: Christopher Bishop

Title: Mappings and Meshes: connections between continuous and discrete geometry I

Abstract: I will give two lectures about some interactions between conformal, hyperbolic and computational geometry. The first lecture shows how ideas from discrete and computational geometry can help compute conformal mappings, and the second lecture reverses the direction and shows how conformal maps can give meshes of polygonal domains with optimal geometry.

Lecture 1: The conformal map from the unit disk to the interior of a polygon P is given by the Schwarz-Christoffel formula, but this is stated in terms of parameters that are hard to compute from P. After some background and motivation, I explain how the medial axis of a domain, a concept from computation geometry, can be used to give a fast approximation to these parameters, with bounds on the accuracy that are independent of P. The precise statement involves quasiconformal mappings, and proving these bounds uses a result about hyperbolic convex sets originating in Thurston's work on 3-manifolds.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]