Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть INTRODUCTION TO MOLECULAR MODELING & COMPUTATIONAL CHEMISTRY LECTURE #94 PHARM-D 10TH SEMESTER MEDIC

  • URDU MEDICAL MNEMONIC
  • 2025-09-15
  • 18
INTRODUCTION TO MOLECULAR MODELING & COMPUTATIONAL CHEMISTRY LECTURE #94 PHARM-D 10TH SEMESTER MEDIC
  • ok logo

Скачать INTRODUCTION TO MOLECULAR MODELING & COMPUTATIONAL CHEMISTRY LECTURE #94 PHARM-D 10TH SEMESTER MEDIC бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно INTRODUCTION TO MOLECULAR MODELING & COMPUTATIONAL CHEMISTRY LECTURE #94 PHARM-D 10TH SEMESTER MEDIC или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку INTRODUCTION TO MOLECULAR MODELING & COMPUTATIONAL CHEMISTRY LECTURE #94 PHARM-D 10TH SEMESTER MEDIC бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео INTRODUCTION TO MOLECULAR MODELING & COMPUTATIONAL CHEMISTRY LECTURE #94 PHARM-D 10TH SEMESTER MEDIC

Introduction to Molecular Modeling and Computational Chemistry

Molecular modeling and computational chemistry are interdisciplinary fields that utilize computer-based methods to study and predict the structures, properties, and behaviors of molecules. These approaches are essential tools in modern chemistry, drug discovery, materials science, and biochemistry.

What is Molecular Modeling?

Molecular modeling involves the use of computational techniques to create virtual representations of molecules and simulate their physical and chemical behaviors. It helps researchers visualize molecular structures, understand interactions, and predict how molecules will behave in different environments.

Key goals of molecular modeling include:
Determining molecular geometries and conformations.
Analyzing intermolecular interactions (e.g., hydrogen bonding, Van der Waals forces).
Predicting physical and chemical properties.
Designing new molecules, such as drugs or catalysts.

What is Computational Chemistry?

Computational chemistry encompasses a set of theoretical and computational methods used to solve chemical problems. It involves applying mathematical models and algorithms to simulate molecular systems at various levels of theory, from classical mechanics to quantum mechanics.

Main objectives include:
Understanding molecular electronic structure.
Calculating energies and thermodynamic properties.
Exploring reaction mechanisms.
Predicting spectroscopic properties.

Core Techniques and Methods

Molecular Mechanics (MM):
Uses classical physics to model molecules.
Treats atoms as spheres connected by bonds modeled as springs.
Suitable for large biomolecules and conformational searches.

Quantum Mechanics (QM):
Uses principles of quantum physics to describe electronic structures.
Provides detailed insights into bonding and reactivity.
Computationally intensive; often applied to smaller systems.

Molecular Dynamics (MD):
Simulates the physical movements of atoms over time.
Tracks how molecules evolve dynamically.
Useful for studying protein folding, drug interactions, etc.

Monte Carlo (MC) Simulations:
Uses random sampling to explore molecular conformations.
Efficient for studying thermodynamic properties.

Docking Studies:
Predicts how small molecules (ligands) bind to target proteins.
Widely used in drug discovery.

Applications of Molecular Modeling and Computational Chemistry

Drug design:** Identifying potential drug candidates by simulating interactions with biological targets.
Material science:** Designing new materials with desired properties.
Catalysis:** Understanding reaction pathways and designing better catalysts.
Biochemistry:** Studying enzyme mechanisms and protein structures.
Environmental chemistry:** Modeling pollutant behavior and interactions.

Advantages and Limitations

Advantages:
Reduces experimental costs and time.
Provides atomic-level insights.
Enables exploration of systems difficult to study experimentally.

Limitations:
Accuracy depends on the quality of models and algorithms.
Computationally demanding for large systems.
Approximations may affect results.

Summary Table

| Aspect | Description |
|----------------------------|----------------------------------------------------------|
| Molecular Modeling | Visualizing and predicting molecular structures and interactions using computational tools. |
| Computational Chemistry | Applying mathematical models and algorithms, including quantum and classical mechanics, to study chemical systems. |
| Main Techniques | Molecular mechanics, quantum mechanics, molecular dynamics, docking. |
| Applications | Drug discovery, material design, enzyme mechanisms, spectroscopy prediction. |

Conclusion

Molecular modeling and computational chemistry are powerful tools that complement experimental approaches, providing detailed insights into molecular systems and accelerating scientific discovery in chemistry, biology, and materials science.

If you'd like more specific details on any method or application, just ask!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]