Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Efficiently Apply relativedelta to Date Columns in Python Using Pandas

  • vlogize
  • 2025-09-04
  • 1
How to Efficiently Apply relativedelta to Date Columns in Python Using Pandas
python apply relativedelta to a column of datespythondatetimevectorization
  • ok logo

Скачать How to Efficiently Apply relativedelta to Date Columns in Python Using Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Efficiently Apply relativedelta to Date Columns in Python Using Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Efficiently Apply relativedelta to Date Columns in Python Using Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Efficiently Apply relativedelta to Date Columns in Python Using Pandas

Discover how to quickly subtract months from date columns in Pandas DataFrame using vectorized operations. Learn the efficient way to manage large datasets!
---
This video is based on the question https://stackoverflow.com/q/64664878/ asked by the user 'user13412850' ( https://stackoverflow.com/u/13412850/ ) and on the answer https://stackoverflow.com/a/64664994/ provided by the user 'Michael Szczesny' ( https://stackoverflow.com/u/14277722/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: python apply relativedelta to a column of dates

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficient Date Manipulation in Pandas: Using relativedelta and Vectorization

When working with date data in Python, especially with large datasets, the performance of your operations can be critical. One common task is to create new date columns based on existing ones, such as subtracting months from a given date. If you're processing thousands of rows, using vectorized methods can greatly enhance efficiency. In this guide, we will explore how to apply relativedelta to a column of dates efficiently using Pandas.

The Problem: Creating a New Date Column

Imagine you have a DataFrame with a column that holds dates, and you want to generate another column that contains dates from two months prior. With a DataFrame size of 30,000 to 40,000 rows, using a lambda function for each date can be quite slow.

Here’s how your original DataFrame looks:

[[See Video to Reveal this Text or Code Snippet]]

Now you might be tempted to use the following line using a lambda function combined with relativedelta:

[[See Video to Reveal this Text or Code Snippet]]

However, this method is not optimal for large datasets. Let’s discuss a more efficient approach.

The Solution: Vectorized Operations with Pandas

Instead of using the apply function which iterates through each row, you can take advantage of Pandas' built-in vectorized functions. Here’s how to create the new date column faster:

Step-by-Step Instructions

Convert the Date Column: Use pd.to_datetime to convert the 'Date' column into datetime objects.

Subtract Months Using DateOffset: Leverage pd.DateOffset to effectively subtract two months from each date in a vectorized manner.

You can apply this efficiently using the following line of code:

[[See Video to Reveal this Text or Code Snippet]]

Example Output

Running the above code will give you an updated DataFrame that looks like this:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By using Pandas' vectorized operations, you can significantly speed up your date manipulations. The use of pd.DateOffset provides a clean and efficient way to subtract months from a date, making your code not only faster but also more readable. In the world of data processing, these optimizations can make a big difference, especially when handling large datasets.

If you have large DataFrames or need to manipulate date columns frequently, remember to leverage vectorization. It’s a powerful tool that will save you valuable time and resources.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]