Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Efficiently Use if-else Statements in Pandas to Create Conditional Columns

  • vlogize
  • 2025-05-26
  • 1
How to Efficiently Use if-else Statements in Pandas to Create Conditional Columns
I would like to create a column conditional if else statement to return the heading of the column vapythonpandasif statementnested
  • ok logo

Скачать How to Efficiently Use if-else Statements in Pandas to Create Conditional Columns бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Efficiently Use if-else Statements in Pandas to Create Conditional Columns или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Efficiently Use if-else Statements in Pandas to Create Conditional Columns бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Efficiently Use if-else Statements in Pandas to Create Conditional Columns

Discover how to create dynamic columns in Pandas with simple `if-else` statements or using the `idxmax` method to streamline your data processing.
---
This video is based on the question https://stackoverflow.com/q/66144936/ asked by the user 'Swarlos' ( https://stackoverflow.com/u/14133457/ ) and on the answer https://stackoverflow.com/a/66145056/ provided by the user 'Quang Hoang' ( https://stackoverflow.com/u/4238408/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: I would like to create a column conditional if else statement to return the heading of the column value it evaluates

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Creating Conditional Columns in Pandas: A Solution for Production Progress Tracking

When working with data in Pandas, especially for tasks like production progress tracking, you may find yourself needing to derive new columns based on existing data. A common scenario is when you have multiple columns indicating percentages, but want to condense them into a single column representing the relevant percentage value based on certain conditions. In this post, we'll explore how you can achieve this effectively using conditional statements in Python.

The Problem: Conditional Column Evaluation

Imagine you have a DataFrame that tracks production milestones through various percentages (25%, 50%, 75%, 90%, 100%) and other values. Here’s a simplified version of what your DataFrame might look like:

[[See Video to Reveal this Text or Code Snippet]]

In this dataset, an 'X' is used to indicate that a certain milestone has been reached. Your goal is to create a new column that reflects the percentage value based on the first 'X' found in the respective columns, while also considering any values in the 'Other' column.

The Initial Approach: Using if-else Statements

One way to tackle this challenge is by using a function with conditional if-else statements. Here’s an example of how you could implement this:

[[See Video to Reveal this Text or Code Snippet]]

Results of Initial Approach

While this approach works, yielding values like '25%' for the first two rows and 'Other' for the last, it's not the most efficient solution. The challenge arises when the output does not directly reflect the percentage value in the respective column.

The Streamlined Solution: Utilizing idxmax

There's a more efficient way to achieve your goal using the ne (not equal) and idxmax() methods, which allows us to condense the logic:

Here's How to Implement It:

Use idxmax() Method: This retrieves the index of the first occurrence of the maximum value in the DataFrame across each row.

[[See Video to Reveal this Text or Code Snippet]]

Update with 'Other' Column Values: After calculating the initial 'Percent', update it if 'Other' is not empty:

[[See Video to Reveal this Text or Code Snippet]]

Final Output

This method provides a cleaner solution, and the output will be:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Using Pandas for data manipulation can save you time when done effectively. Whether employing conditional statements or utilizing built-in methods like idxmax, understanding how to translate your requirements into code is key. The streamlined solution with idxmax is not only more efficient but also cleaner and easier to maintain.

Implementing these methods can significantly enhance your data handling processes, especially in dynamic datasets like production tracking.

By mastering these techniques, you will be well on your way to efficiently manipulating and analyzing your data with Pandas.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]