Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть End to End Learning of Spiking Neural Network Based on R-STDP for a Lane Keeping Vehicle

  • ICRA 2018
  • 2018-05-16
  • 6511
End to End Learning of Spiking Neural Network Based on R-STDP for a Lane Keeping Vehicle
NeuroroboticsBiologically-Inspired Robots
  • ok logo

Скачать End to End Learning of Spiking Neural Network Based on R-STDP for a Lane Keeping Vehicle бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно End to End Learning of Spiking Neural Network Based on R-STDP for a Lane Keeping Vehicle или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку End to End Learning of Spiking Neural Network Based on R-STDP for a Lane Keeping Vehicle бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео End to End Learning of Spiking Neural Network Based on R-STDP for a Lane Keeping Vehicle

ICRA 2018 Spotlight Video
Interactive Session Wed PM Pod M.8
Authors: Bing, Zhenshan; Meschede, Claus; Huang, Kai; Chen, Guang; Roehrbein, Florian; Akl, Mahmoud; Knoll, Alois
Title: End to End Learning of Spiking Neural Network Based on R-STDP for a Lane Keeping Vehicle

Abstract:
Learning-based methods have demonstrated clear advantages in controlling robot tasks, such as the information fusion abilities, strong robustness, and high accuracy. Meanwhile, the on-board systems of robots have limited computation and energy resources, which are contradictory with state-of-the-art learning approaches. They are either too lightweight to solve complex problems or too heavyweight to be used for mobile applications. On the other hand, training spiking neural networks (SNNs) with biological plausibility has great potentials of performing fast computation and energy efficiency. However, the lack of effective learning rules for SNNs impedes their wide usage in mobile robot applications. This paper addresses the problem by introducing an end to end learning approach of spiking neural networks for a lane keeping vehicle. We consider the reward-modulated spike-timing-dependent-plasticity (R-STDP) as a promising solution in training SNNs, since it combines the advantages of both reinforcement learning and the well-known STDP. We test our approach in three scenarios that a Pioneer robot is controlled to keep lanes based on an SNN. Specifically, the lane information is encoded by the event data from a neuromorphic vision sensor. The SNN is constructed using R-STDP synapses in an all-to-all fashion. We demonstrate the advantages of our approach in terms of the lateral localization accuracy by comparing with other state-of-the-art learning algorithms based on SNNs.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]