Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Compare Similarity of Two Strings in Python Using FuzzyWuzzy

  • vlogize
  • 2025-03-26
  • 1
How to Compare Similarity of Two Strings in Python Using FuzzyWuzzy
Compare Similarity of two stringspythonpandas
  • ok logo

Скачать How to Compare Similarity of Two Strings in Python Using FuzzyWuzzy бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Compare Similarity of Two Strings in Python Using FuzzyWuzzy или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Compare Similarity of Two Strings in Python Using FuzzyWuzzy бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Compare Similarity of Two Strings in Python Using FuzzyWuzzy

Discover how to easily compare the similarity of company names in Python using the FuzzyWuzzy library. Learn best practices and see code examples!
---
This video is based on the question https://stackoverflow.com/q/71143667/ asked by the user 'NickP' ( https://stackoverflow.com/u/478213/ ) and on the answer https://stackoverflow.com/a/71143805/ provided by the user 'BENY' ( https://stackoverflow.com/u/7964527/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Compare Similarity of two strings

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Comparing the Similarity of Two Strings in Python

When dealing with legacy data, especially with company names, you might encounter a scenario where names are not always consistent. For instance, one dataset may have "LemonFarms" while another has "Lemon Farms Inc." This inconsistency can make it challenging to accurately match profiles. This guide discusses a practical solution for comparing string similarities without diving into machine learning (ML) complexities.

The Problem

In a typical matching scenario, you might have various company name representations that require quality assurance checks for alignment. A simple examination of names might not suffice due to typos, abbreviations, or formatting differences. For instance:

Match 1: "LemonFarms" vs. "Lemon Farms Inc"

Match 2: "Peachtree" vs. "PeachTree Farms"

Match 3: "Tomato Grove" vs. "Orange Cheetah Farm"

Your goal is to determine the likelihood that these pairs of names belong to the same entity. Specifically, Match 1 and 2 appear to be reasonable matches, while Match 3 does not.

The Solution: Using FuzzyWuzzy

One effective way to assess string similarity in Python is by utilizing the fuzzywuzzy library. This library specializes in string matching and can return a score representing the level of similarity between two strings.

Step-by-Step Guide

Here’s how you can implement this solution using Python:

1. Install FuzzyWuzzy

If you haven't already, you need to install the FuzzyWuzzy package. You can do this via pip:

[[See Video to Reveal this Text or Code Snippet]]

2. Prepare Your Data

Assuming you have a DataFrame setup where each row contains the names to compare, it should look something like this:

Match IDName LeftName Right1LemonFarmsLemon Farms Inc2PeachtreePeachTree Farms3Tomato GroveOrange Cheetah Farm3. Calculate Similarity Scores

Using the FuzzyWuzzy library, you can compute the similarity scores like this:

[[See Video to Reveal this Text or Code Snippet]]

4. Interpret the Results

After executing the code above, you get a new DataFrame with a score column indicating the similarity level of each pair.

Match IDName LeftName RightScore1LemonFarmsLemon Farms Inc902PeachtreePeachTree Farms893Tomato GroveOrange Cheetah Farm13Score Interpretation: A score close to 100 indicates a high similarity, while a score significantly lower, like the one for Match 3 (13), suggests a poor match. You can set your own score thresholds for determining what constitutes a "good" or "bad" match.

Conclusion

By leveraging the fuzzywuzzy library, you can efficiently assess and compare the similarity of string data such as company names. This method provides a straightforward and effective way to validate matches within datasets, ensuring data integrity without getting mired in complex algorithms or machine learning techniques.

Now you can implement this technique to improve your data matching process, ensuring you catch potential errors and maintain high-quality records!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]