Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Emma Hubert: A new approach to principal-agent problems with volatility control

  • Centre International de Rencontres Mathématiques
  • 2025-06-04
  • 199
Emma Hubert: A new approach to principal-agent problems with volatility control
CirmCNRSSMFMathematicsmathématiquesMarseilleLuminyCentre international de rencontres mathématiquesaix-marseilleuniversitéAMUaixmarseilleuniversity
  • ok logo

Скачать Emma Hubert: A new approach to principal-agent problems with volatility control бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Emma Hubert: A new approach to principal-agent problems with volatility control или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Emma Hubert: A new approach to principal-agent problems with volatility control бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Emma Hubert: A new approach to principal-agent problems with volatility control

The seminal work of Cvitanic, Possamai and Touzi (2018) [1] introduced a general framework for continuous-time principal-agent problems using dynamic programming and second-order backward stochastic differential equations (2BSDEs). In this talk, we first propose an alternative formulation of the principal-agent problem that allows for a more direct resolution using standard BSDEs alone. Our approach is motivated by a key observation in [1]: when the principal observes the output process X continuously, she can compute its quadratic variation pathwise. While this information is incorporated into the contract in [1], we consider here a reformulation where the principal directly controls this process in a ‘first-best' setting. The resolution of this alternative problem follows the methodology known as Sannikov's trick [2] in continuous-time principal-agent problems. We then demonstrate that the solution to this ‘first-best' formulation coincides with the original problem's solution. More specifically, leveraging the contract form introduced in [1], we establish that the ‘first-best' outcome can be attained even when the principal lacks direct control over the quadratic variation. Crucially, our approach does not require the use of 2BSDEs to prove contract optimality, as optimality naturally follows from achieving the ‘first-best' scenario. We believe that this reformulation offers a more accessible approach to solving continuous-time principal-agent problems with volatility control, facilitating broader dissemination across various fields. In the second part of the talk, we will explore how this methodology extends to more complex settings, particularly multi-agent frameworks. Research partially supported by the NSF grant DMS-2307736.

Recording during the thematic meeting : «Probability, finance and signal: conference in honour of René Carmona » the May 20, 2025 at the Centre International de Rencontres Mathématiques (Marseille, France)

Filmmaker : Luca Récanzone

Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities: - Chapter markers and keywords to watch the parts of your choice in the video - Videos enriched with abstracts, bibliographies, Mathematics Subject Classification - Multi-criteria search by author, title, tags, mathematical area

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]