Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Mastering Regex in Pandas: A Step-by-Step Guide to Conditional Replacement

  • vlogize
  • 2025-10-03
  • 0
Mastering Regex in Pandas: A Step-by-Step Guide to Conditional Replacement
Python Pandas - replace based on regex - ignoring rest of the values - regex based vlookup in pythonpythonregexpandasreplace
  • ok logo

Скачать Mastering Regex in Pandas: A Step-by-Step Guide to Conditional Replacement бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Mastering Regex in Pandas: A Step-by-Step Guide to Conditional Replacement или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Mastering Regex in Pandas: A Step-by-Step Guide to Conditional Replacement бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Mastering Regex in Pandas: A Step-by-Step Guide to Conditional Replacement

Discover how to effectively use regex with Pandas to replace values based on a dictionary of regex expressions, while leaving others blank or NULL.
---
This video is based on the question https://stackoverflow.com/q/63027915/ asked by the user 'emudria' ( https://stackoverflow.com/u/6266300/ ) and on the answer https://stackoverflow.com/a/63027981/ provided by the user 'jezrael' ( https://stackoverflow.com/u/2901002/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Python Pandas - replace based on regex - ignoring rest of the values - regex based vlookup in python

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Mastering Regex in Pandas: A Step-by-Step Guide to Conditional Replacement

Data manipulation is one of the key strengths of Python, especially when it comes to handling data using the Pandas library. One task that many data professionals might find challenging is replacing values in a DataFrame based on regular expressions (regex). In this guide, we will address a common problem and provide a clear, step-by-step solution. Whether you are a beginner or more experienced in Python, you'll find useful tips here on how to utilize regex for replacement tasks effectively.

The Problem: Conditional Replacement Using Regex

Imagine you have a DataFrame df that contains mixed strings and you want to match these strings with regex patterns defined in a dictionary. The goal is to replace those matches with specific values from the dictionary, while leaving non-matching values as blank or NULL. For example, given that you have the following:

[[See Video to Reveal this Text or Code Snippet]]

Your DataFrame looks as follows:

[[See Video to Reveal this Text or Code Snippet]]

You want the result to reflect the replacements as such:

[[See Video to Reveal this Text or Code Snippet]]

However, your initial attempt, while functional, included undesired extra replacements that you didn't want, transforming c200 into a non-blank output which is not your intended goal.

The Solution: Correct Use of Regex in Pandas

Step 1: Setup your DataFrame and Dictionary

Ensure you have your DataFrame and regex dictionary ready for processing. Here they are again for reference:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Transform Your Regex Dictionary

Pandas has specific requirements for regex patterns, and you need to modify your dictionary accordingly. Let's convert the regex patterns to the format suitable for the replace function:

[[See Video to Reveal this Text or Code Snippet]]

Now, the dictionary looks like this and is ready for use:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Identify Matches Using str.contains

Before performing replacements, check each value in your DataFrame against your regex patterns. This can be done by leveraging str.contains() and creating a mask:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Replace Based on Matches

Using the mask you created, apply the replacements only to the matching values while leaving the others as NaN (or blank):

[[See Video to Reveal this Text or Code Snippet]]

This line will populate the new column E based only on the matches while keeping non-matching rows blank.

Step 5: View the Result

Now, when you print your DataFrame, it should yield the desired output without filling in unwanted values:

[[See Video to Reveal this Text or Code Snippet]]

The resulting DataFrame should be:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

In this article, we've tackled the problem of performing conditional replacements in a Pandas DataFrame using regex. By following the steps outlined above, you can effectively manage complex datasets and manipulate them according to your requirements. Regex can be a powerful ally in data processing when used correctly, allowing you to handle diverse scenarios with ease.

So, if you are looking for an efficient way to combine regex with Pandas, this guide should serve as a foundation for your data manipulation tasks. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]