Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть USENIX Security '24 - Neural Network Semantic Backdoor Detection and Mitigation: A Causality-Based..

  • USENIX
  • 2024-11-12
  • 184
USENIX Security '24 - Neural Network Semantic Backdoor Detection and Mitigation: A Causality-Based..
usenixtechnologyconferenceopen access
  • ok logo

Скачать USENIX Security '24 - Neural Network Semantic Backdoor Detection and Mitigation: A Causality-Based.. бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно USENIX Security '24 - Neural Network Semantic Backdoor Detection and Mitigation: A Causality-Based.. или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку USENIX Security '24 - Neural Network Semantic Backdoor Detection and Mitigation: A Causality-Based.. бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео USENIX Security '24 - Neural Network Semantic Backdoor Detection and Mitigation: A Causality-Based..

Neural Network Semantic Backdoor Detection and Mitigation: A Causality-Based Approach

Bing Sun, Jun Sun, and Wayne Koh, Singapore Management University; Jie Shi, Huawei Singapore

Different from ordinary backdoors in neural networks which are introduced with artificial triggers (e.g., certain specific patch) and/or by tampering the samples, semantic backdoors are introduced by simply manipulating the semantic, e.g., by labeling green cars as frogs in the training set. By focusing on samples with rare semantic features (such as green cars), the accuracy of the model is often minimally affected. Since the attacker is not required to modify the input sample during training nor inference time, semantic backdoors are challenging to detect and remove. Existing backdoor detection and mitigation techniques are shown to be ineffective with respect to semantic backdoors. In this work, we propose a method to systematically detect and remove semantic backdoors. Specifically we propose SODA (Semantic BackdOor Detection and MitigAtion) with the key idea of conducting lightweight causality analysis to identify potential semantic backdoor based on how hidden neurons contribute to the predictions and to remove the backdoor by adjusting the responsible neurons' contribution towards the correct predictions through optimization. SODA is evaluated with 21 neural networks trained on 6 benchmark datasets and 2 kinds of semantic backdoor attacks for each dataset. The results show that it effectively detects and removes semantic backdoors and preserves the accuracy of the neural networks.

View the full USENIX Security '24 program at https://www.usenix.org/conference/use...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]