Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Updating Specific Rows in a Hive Table Using pandas and PySpark

  • vlogize
  • 2025-04-11
  • 4
Updating Specific Rows in a Hive Table Using pandas and PySpark
pandas dataframe : how to update specific rows in hive tablepython 3.xpandasdataframepysparkhive
  • ok logo

Скачать Updating Specific Rows in a Hive Table Using pandas and PySpark бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Updating Specific Rows in a Hive Table Using pandas and PySpark или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Updating Specific Rows in a Hive Table Using pandas and PySpark бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Updating Specific Rows in a Hive Table Using pandas and PySpark

Learn how to efficiently update specific rows in a Hive table by utilizing `pandas` DataFrames and `PySpark`. This guide provides a comprehensive walkthrough.
---
This video is based on the question https://stackoverflow.com/q/75924901/ asked by the user 'AbtPst' ( https://stackoverflow.com/u/2334092/ ) and on the answer https://stackoverflow.com/a/75924943/ provided by the user 'artemis' ( https://stackoverflow.com/u/4876561/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: pandas dataframe : how to update specific rows in hive table

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Update Specific Rows in a Hive Table Using pandas and PySpark

Updating data in a Hive table can be a challenge when you only want to change specific rows instead of replacing entire datasets. In this guide, we will explore how to update a single column in a Hive table using pandas and PySpark, ensuring you only affect the rows you specifically want to alter.

The Problem

You may encounter a common scenario where you need to update specific rows in a Hive table based on certain filter criteria. The standard approach often involves overwriting the whole partition, which is not desirable since you want to retain the unaltered rows. Thus, finding a solution for updating only those specific rows while keeping the rest of your partition intact is crucial.

The Approach

To achieve this, you'll need to perform the following steps:

Select Data from Hive: Start by querying your Hive table to get the current data that you wish to update.

Modify the DataFrame: Make the necessary updates to the pandas DataFrame derived from the Hive table.

Convert and Write back to Hive: Convert the updated pandas DataFrame back to a Spark DataFrame, then use the appropriate method to write only the changed data back to your Hive table.

Step 1: Selecting Data from Hive

Using PySpark, you first need to set up a connection and execute a query to retrieve the relevant data from the Hive table. Here’s how to do it:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Modifying the DataFrame

Once you have your data, convert it to a pandas DataFrame for easier manipulation. You can utilize iterrows() to iterate through each row, updating the fields as required.

[[See Video to Reveal this Text or Code Snippet]]

In this snippet, we append '_suffix' to the existing attribute1 value for each row that meets the condition.

Step 3: Converting Back and Writing to Hive

After making the necessary changes, you will need to convert the updated pandas DataFrame back to a Spark DataFrame and write the updates back to the Hive table. Ensure to set the overwrite mode to dynamic so that only the selected rows are modified.

[[See Video to Reveal this Text or Code Snippet]]

Summary

With these steps, you can efficiently update specific rows in a Hive Table using pandas and PySpark. By fetching the relevant data, making adjustments in the pandas DataFrame, and optimally writing back to Hive with partitioning, you avoid unwanted data loss and keep your dataset consistent. This is a powerful method to manage data while fine-tuning updates in Hive environments.

Feel free to explore this methodology further and adapt it to your specific use cases. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]