Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Grouping Age Values with pd.cut in Pandas

  • vlogize
  • 2025-09-29
  • 2
Grouping Age Values with pd.cut in Pandas
Grouping a column values using pd.cut - pandaspythonpandasdataframe
  • ok logo

Скачать Grouping Age Values with pd.cut in Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Grouping Age Values with pd.cut in Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Grouping Age Values with pd.cut in Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Grouping Age Values with pd.cut in Pandas

Learn how to group `Age` column values in pandas using `pd.cut` for scoring customers based on age ranges effectively and efficiently.
---
This video is based on the question https://stackoverflow.com/q/63726175/ asked by the user 'Danish' ( https://stackoverflow.com/u/8901845/ ) and on the answer https://stackoverflow.com/a/63726307/ provided by the user 'ALollz' ( https://stackoverflow.com/u/4333359/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Grouping a column values using pd.cut - pandas

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Grouping Age Values with pd.cut in Pandas: A Step-by-Step Guide

In the world of data analysis, transforming and categorizing data is a common task. One of the challenges that data practitioners often face is how to group continuous data into discrete categories. A typical application of this technique is scoring customers based on their age. In this guide, we will walk through how to achieve this using the pd.cut function from the pandas library.

The Problem: Scoring Customers by Age

Consider a simple DataFrame containing customer IDs and their corresponding ages. The objective is to categorize these customers according to specific age ranges and assign a score based on those categories. Here’s what your DataFrame looks like:

[[See Video to Reveal this Text or Code Snippet]]

Scoring Criteria

The scoring rules we want to implement are as follows:

If Age <= 0, then Score = 100

If 0 < Age <= 10, then Score = 90

If 10 < Age <= 30, then Score = 80

If 30 < Age <= 90, then Score = 50

Else Score = 10

Based on these conditions, we want the final output to look like this:

[[See Video to Reveal this Text or Code Snippet]]

The Solution: Using pd.cut

To simplify the scoring process, we can leverage the pd.cut function from pandas. This function allows us to segment and sort data values into discrete bins. Here’s how we can implement this scoring:

Step-by-Step Explanation

Import Libraries:
First, ensure that you have the pandas and numpy libraries imported.

[[See Video to Reveal this Text or Code Snippet]]

Define the Bins:
Specify the bins according to the age criteria defined earlier. The bins are created using the values that dictate the boundaries of each score range.

[[See Video to Reveal this Text or Code Snippet]]

Assign Labels:
Set labels for each corresponding bin that represents the score values.

[[See Video to Reveal this Text or Code Snippet]]

Apply pd.cut:
Utilize the pd.cut function to categorize the 'Age' column and assign scores accordingly.

[[See Video to Reveal this Text or Code Snippet]]

Final Output:
After running the above code, your DataFrame will now include a 'Score' column corresponding to each customer's age.

[[See Video to Reveal this Text or Code Snippet]]

Complete Example Code

Here’s the complete Python code that integrates all the steps discussed:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By using pd.cut, we efficiently categorized the Age values and assigned the desired scores in a straightforward manner. This method not only simplifies the scoring process but also enhances code readability and performance. If you often work with data categorization, mastering pd.cut will be invaluable in your data analysis toolkit. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]