Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Machine Learning for Malware Analysis (Part1)

  • Data Bowl Recipes
  • 2021-08-02
  • 1439
Machine Learning for Malware Analysis (Part1)
Machine LearningAverage PrecisionImbalanced Learningimbalanced datasetmalwaremalware detectionbinary classificationmalware analysisdata scienceprecision recall curveroc curvecybersecurityprecision recall
  • ok logo

Скачать Machine Learning for Malware Analysis (Part1) бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Machine Learning for Malware Analysis (Part1) или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Machine Learning for Malware Analysis (Part1) бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Machine Learning for Malware Analysis (Part1)

This introductory lesson is for data scientists / machine learning engineers to get a basic understanding of common malware types as well as cybersecurity researchers and experts to get a basic understanding of relevant machine learning model evaluation metrics for classification tasks

CONTENT OF THIS VIDEO

00:00 Intro
01:42 Introduction to Malware types
06:13 Malware Analysis tools and types
10:13 Precision, Recall, Accuracy and F1-Score
13:59 Sensitivity, Specitivity and Balanced Accuracy Score
16:43 Receiver operating characteristic curve (ROC)
20:00 Example cancer detection classifier threshold with true positive rate and false positive rate
22:08 Precision Recall Curve
24:47 Average Precision Score

Handshake between Cybersecurity and Machine Learning for IT-Security Tools and Software development has been gaining more attention in recent years. The data landscape to train Machine Learning models is more accessible for cybersecurity researchers and experts.
Machine Learning algorithms applied to tabular datasets for classification problems can be applied for malware analysis and detection. Labelled data is therefore required to train supervised ML algorithms for binary classification models to detect malware and multiclass classification for malware type analysis. This intro lesson will give a brief overview of some common malware types.
Another challenge is to build a robust machine learning model for classification tasks, as in most real world cases the data is highly imbalanced. An overfitted Machine Learning model will most likely fail to detect malware, high cost and negative business impact are worst case scenarios and consequences of applying overfitted Machine Learning model for malware detection.
In order to gain acceptance for applying Machine Learning models within the malware analysis process, it is recommended to use model evaluation metrics like average precision score, balanced accuracy score and precision recall curve. This introductory lesson will enable you to get a deep understanding of the mentioned evaluation metrics and differentiate these metrics with precision, accuracy, and receiver operating characteristic curve.

At the end of the day cybersecurity experts will need a robust machine learning model to embed into the IT-Security Tools and Software development process which can consistently detect or analyse malware and outperform conventional software solutions.

About Data Bowl Recipes:

Recipes about Data Science and Data Engineering.
Don't forget to subscribe to the channel and hit the like button

Thanks for watching!

#confusionmatrix #malwaretypes #malwaredetection
#supervisedmachinelearning #machinelearning #recall
#malwaredetection2022 #malwaredetection #f1score
#cybersecurity #malware

Related Phrases:
Machine Learning, Malware Detection, Cybersecurity 2022, Machine Learning, Malware Detection Techniques, CatBoost, Randomforest, Malware Analysis, Confusion Matrix, Average Precision Score, Precision Recall Curve

Disclaimer: We do not accept any liability for any loss or damage which is incurred from you acting or not acting as a result of watching any of our publications. You acknowledge that you use the information we provide at your own risk. Do your own research.

Copyright Notice: This video and our YouTube channel contains dialog, music and images that are property of Data Bowl Recipes. You are authorized to share the video link and channel, embed this video in your website or others.

© Data Bowl Recipes

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]