Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Efficiently Explode and Select Struct Fields in PySpark

  • vlogize
  • 2025-04-05
  • 1
How to Efficiently Explode and Select Struct Fields in PySpark
How to chain explode and struct field selection?apache sparkpysparkstructapache spark sqlexplode
  • ok logo

Скачать How to Efficiently Explode and Select Struct Fields in PySpark бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Efficiently Explode and Select Struct Fields in PySpark или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Efficiently Explode and Select Struct Fields in PySpark бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Efficiently Explode and Select Struct Fields in PySpark

Learn how to combine `explode` and struct field selection in PySpark using a single, efficient method to manipulate DataFrames with complex data structures.
---
This video is based on the question https://stackoverflow.com/q/72792752/ asked by the user 'ZygD' ( https://stackoverflow.com/u/2753501/ ) and on the answer https://stackoverflow.com/a/72793819/ provided by the user 'wwnde' ( https://stackoverflow.com/u/8986975/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to chain explode and struct field selection?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Mastering DataFrame Manipulations in PySpark

When working with DataFrames in PySpark, you often encounter complex data structures, particularly when dealing with nested arrays and structs. A common challenge arises when you need to both explode an array into rows and select specific fields from the resulting struct. This guide walks through how to achieve this efficiently, using the inline function.

The Problem

Here’s the scenario: you have a DataFrame containing an array of structs, and you want to explode this array while also selecting specific fields from each struct. Initially, you might think of using the explode function followed by a separate select to extract the necessary fields. While this works, it requires two separate select statements, which can make your code less efficient and harder to read.

Let's break down the steps involved in this process using an example.

Sample Data

We start with a DataFrame that includes an array of structs as follows:

[[See Video to Reveal this Text or Code Snippet]]

This will output:

[[See Video to Reveal this Text or Code Snippet]]

And the schema will show:

[[See Video to Reveal this Text or Code Snippet]]

Here, col_name is an array containing structs that have two integer fields, c1 and c2.

The Traditional Approach

Exploding the Array: You can explode the array to transform it into rows but need to handle struct fields separately:

[[See Video to Reveal this Text or Code Snippet]]

This will give you:

[[See Video to Reveal this Text or Code Snippet]]

The Inefficient Part

While the code works, it's not the most efficient way as it requires two select statements. We want to streamline this process.

The Efficient Solution: Using inline

The solution to avoid multiple select calls is to use the inline function. The inline function allows for flattening complex data structures efficiently.

Here’s how to do it:

You simply use the selectExpr method with inline to accomplish the explosion and field selection in a single step:

[[See Video to Reveal this Text or Code Snippet]]

This results in:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

In conclusion, when working with arrays of structs in PySpark, leveraging the inline function allows you to explode and select the necessary fields in a single step, thus enhancing both the efficiency and readability of your code. This technique is particularly useful when you are dealing with large datasets where performance is essential.

Try implementing this method in your own PySpark workflows for cleaner and more efficient data transformations!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • How to Learn Python Fast in 2024? | Learn Python With ChatGPT | Intellipaat #Shorts #Python #ChatGPT
    How to Learn Python Fast in 2024? | Learn Python With ChatGPT | Intellipaat #Shorts #Python #ChatGPT
    1 год назад
  • There is an Order to Learning Data Structures & Algorithms!!!
    There is an Order to Learning Data Structures & Algorithms!!!
    1 год назад
  • Maximum Subarray - Kadane's Algorithm -- Leetcode 53
    Maximum Subarray - Kadane's Algorithm -- Leetcode 53
    1 год назад
  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]