Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Calculate Weighted Cumulative Sums with a Time Constraint in R

  • vlogize
  • 2025-08-10
  • 1
How to Calculate Weighted Cumulative Sums with a Time Constraint in R
weighted cumsum rolling with another column
  • ok logo

Скачать How to Calculate Weighted Cumulative Sums with a Time Constraint in R бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Calculate Weighted Cumulative Sums with a Time Constraint in R или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Calculate Weighted Cumulative Sums with a Time Constraint in R бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Calculate Weighted Cumulative Sums with a Time Constraint in R

A comprehensive guide on calculating weighted cumulative sums in R by including only recent data points that meet a specific time constraint.
---
This video is based on the question https://stackoverflow.com/q/65079951/ asked by the user 'hotbacon' ( https://stackoverflow.com/u/13314101/ ) and on the answer https://stackoverflow.com/a/65080945/ provided by the user 'G. Grothendieck' ( https://stackoverflow.com/u/516548/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: weighted cumsum rolling with another column

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Calculate Weighted Cumulative Sums with a Time Constraint in R

When working with data in R, you might encounter scenarios where you need to calculate a weighted cumulative sum (cumsum) of values based on certain conditions. A common case is calculating an average grade weighted by the time each event took, while only considering the most recent events that add up to a specific total time, like 400 minutes.

In this guide, we’ll explore how to achieve this using the dplyr and zoo packages in R, providing a breakdown of the process into easy-to-follow steps.

The Dataset

Let’s assume we have the following data frame:

[[See Video to Reveal this Text or Code Snippet]]

This data frame consists of three columns: name, minutes, and grade. Our goal is to calculate a new column, weighted_grade, which offers a weighted average of grades based on cumulative minutes, constrained to the last 400 minutes.

Solution Steps

To calculate the weighted average correctly, we will discuss two different methods: using rollapplyr from the zoo package and leveraging SQL queries with the sqldf package.

Method 1: Using rollapplyr

Load Required Libraries:
Ensure that you have the dplyr and zoo packages installed and loaded.

[[See Video to Reveal this Text or Code Snippet]]

Calculate Weighted Cumulative Average:
Use the rollapplyr function within a grouped mutate call to compute the weighted average based on the last 400 minutes.

[[See Video to Reveal this Text or Code Snippet]]

This will yield a data frame showing the computed mean (weighted grade) for only the rows that meet the 400 minutes requirement.

Method 2: Using SQL with sqldf

Another approach to solving this problem is by using SQL queries to calculate the cumulative sum directly:

Load the sqldf Library:
Make sure to have the package installed.

[[See Video to Reveal this Text or Code Snippet]]

Run the SQL Query:
Execute the following SQL code to compute the weighted average:

[[See Video to Reveal this Text or Code Snippet]]

This query creates a cumulative total of minutes for each name and then computes the mean grade nuanced by the constraints.

Conclusion

Both methods yield a similar result, allowing you to effectively filter for only the most relevant recent entries based on a time constraint. You can choose the method that best fits your workflow preferences in R.

This approach is particularly useful in various domains, including education, project management, and analytics, where time and performance metrics are critical.

With these tools and techniques at your disposal, you're well-equipped to tackle similar problems in your own projects!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]