Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Research Seminar: "Privacy & Adversarial Robustness in Statistical Estimation" by Prof. Linjun Zhang

  • SigProcessing
  • 2021-02-26
  • 333
Research Seminar: "Privacy & Adversarial Robustness in Statistical Estimation" by Prof. Linjun Zhang
privacystatistical estimationadversarial robustnesshigh-dimensional datadifferential privacyresearch seminar
  • ok logo

Скачать Research Seminar: "Privacy & Adversarial Robustness in Statistical Estimation" by Prof. Linjun Zhang бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Research Seminar: "Privacy & Adversarial Robustness in Statistical Estimation" by Prof. Linjun Zhang или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Research Seminar: "Privacy & Adversarial Robustness in Statistical Estimation" by Prof. Linjun Zhang бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Research Seminar: "Privacy & Adversarial Robustness in Statistical Estimation" by Prof. Linjun Zhang

Fall 2020 SIP Seminar Series: November 18, 2020
[http://www.inspirelab.us/seminars/]

Speaker: Prof. Linjun Zhang
Title: The cost of privacy and adversarial robustness in statistical estimation

Abstract: Privacy-preserving data analysis is a rising challenge in contemporary statistics, as the privacy guarantees of statistical methods are often achieved at the expense of accuracy. In this talk, we investigate the tradeoff between statistical accuracy and privacy in generalized linear models, under both the classical low- dimensional and modern high-dimensional settings. A primary focus is to establish minimax optimality for statistical estimation with the (\epsilon, \delta)-differential privacy constraint. To this end, we find that classical lower bound arguments fail to yield sharp results, and new technical tools are called for. Another challenge in contemporary statistics is adversarial robustness. However, little research has been done to quantify how robust optimization changes the optimizers and the prediction losses comparing to standard training. In this talk, inspired by the influence function in robust statistics, we introduce the Adversarial Influence Function (AIF) as a tool to investigate the solution produced by robust optimization. The proposed AIF enjoys a closed-form and can be calculated efficiently.

Biography: Linjun Zhang is an Assistant Professor in the Department of Statistics at Rutgers University. He earned his Ph.D. from the Wharton School, University of Pennsylvania. His research focuses on high-dimensional statistics, adversarial robustness, and differential privacy.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]