Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Running mrjob with Python on a Kubernetes Hadoop Cluster

  • vlogize
  • 2025-03-23
  • 1
Running mrjob with Python on a Kubernetes Hadoop Cluster
Run Python mrjob in a Kubernetes on Hadoop Clusterkuberneteshadoopmrjob
  • ok logo

Скачать Running mrjob with Python on a Kubernetes Hadoop Cluster бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Running mrjob with Python on a Kubernetes Hadoop Cluster или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Running mrjob with Python on a Kubernetes Hadoop Cluster бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Running mrjob with Python on a Kubernetes Hadoop Cluster

Discover how to effectively run `mrjob` MapReduce jobs from a Jupyter Notebook in a Kubernetes environment with Hadoop. Learn the necessary configurations and alternatives for smooth execution.
---
This video is based on the question https://stackoverflow.com/q/74181719/ asked by the user 'Thisara Watawana' ( https://stackoverflow.com/u/3505927/ ) and on the answer https://stackoverflow.com/a/74184906/ provided by the user 'OneCricketeer' ( https://stackoverflow.com/u/2308683/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Run Python mrjob in a Kubernetes on Hadoop Cluster

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Run mrjob in a Kubernetes Hadoop Cluster

If you’re diving into the world of data processing with Python and you’re using mrjob to manage your MapReduce jobs, you might be wondering how to configure it to run effectively within a Kubernetes environment that’s orchestrating a Hadoop cluster. Let’s explore this challenge and uncover solutions that will help you get mrjob running smoothly from a Jupyter Notebook in a Kubernetes (GKE) setup.

The Challenge

You have already experimented with running mrjob locally and confirmed that it works perfectly. Your current environment includes:

Hadoop 3.3 running on a Kubernetes (GKE) cluster

An operational Jupyter Notebook pod within the same cluster

However, you have encountered a significant issue: the Jupyter Notebook environment does not have the $HADOOP_HOME variable defined, which is leading to errors when you attempt to execute mrjob MapReduce jobs. Attempting to overcome this, you created a configuration file called mrjob.conf to set the PATH, but the problem persists.

Analyzing the Issue

The primary reason for this error lies in the fact that mrjob acts as a wrapper around hadoop-streaming which necessitates the presence of Hadoop binaries on the server (or pod) where the code runs. This includes the Jupyter pod that you are using to submit jobs.

Common Error Encountered

You might have noticed the following error message when attempting to run your mrjob script:

[[See Video to Reveal this Text or Code Snippet]]

This indicates that the Hadoop binaries aren’t being recognized within your Jupyter environment.

Proposed Solutions

To resolve this issue and ensure successful execution of your MapReduce jobs from Jupyter Notebook, consider the following approaches:

1. Define HADOOP_HOME in Jupyter Notebook

In your mrjob.conf file, you attempted to configure the environment variables. Make sure that you:

Specify the full path to the hadoop executable in the PATH.

Double-check for any typos in your configuration file.

Example configuration:

[[See Video to Reveal this Text or Code Snippet]]

This will ensure that the Jupyter Notebook has access to Hadoop binaries.

2. Deploy PySpark/PyFlink/Beam Applications

While mrjob can be used for running MapReduce jobs, it might be beneficial to explore alternatives that fit better in a Kubernetes environment. Tools such as:

PySpark: A powerful tool built specifically for distributed data processing.

PyFlink: Offers capabilities similar to PySpark but is optimized for use with Flink.

Apache Beam: Particularly recommended for its compatibility with Google Cloud Platform's DataFlow.

Using these frameworks can simplify deployment and manageability, reducing reliance on Hadoop binaries and configurations.

Why Beam?

Beam stands out due to its seamless integration with GCP DataFlow, allowing for a scalable and efficient workflow that can abstract away some of the complexities running directly on Kubernetes.

Conclusion

Running mrjob within a Kubernetes Hadoop environment can be tricky due to environment variable configurations and dependencies. By refining your mrjob.conf file for proper Hadoop binary access or considering alternatives like PySpark, PyFlink, or Apache Beam, you can enhance your data processing capabilities in a more streamlined manner. Embrace these tools to improve your workflow and make the most out of your Kubernetes cluster.

If you have any questions or need further assistance, feel free to comment below!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]