Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Thiago da Silva Alves: Honeybee conservation with Python

  • PyCon CZ
  • 2018-06-26
  • 163
Thiago da Silva Alves: Honeybee conservation with Python
  • ok logo

Скачать Thiago da Silva Alves: Honeybee conservation with Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Thiago da Silva Alves: Honeybee conservation with Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Thiago da Silva Alves: Honeybee conservation with Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Thiago da Silva Alves: Honeybee conservation with Python

In the apidologie research area, there is one task that obliges the researcher to classify and count the contents of each comb cell in each frame. With this task is possible to control the progression of brood, bees, and food reserves. Since each frame can have thousands of cells, in most cases this task is done by a human in an approximate way, making it error-prone. The automation of this process, using image analysis represents an evolution in this field.

The honey bee is the world’s most important pollinator of food crops. Almost one-third of the food that we consume each day relies on pollination done mainly by bees. So the creation of software that helps the preservation of this species has a direct impact on our lives.

I am going to show you a few challenges we have faced, from creating comb cell detectors using OpenCV and Shapely, to developing models based on Deep Learning to classify the cell's content using the Caffe framework. With these models, we have obtained accuracy above 98% within eight different classes and solved the proposed problem.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]