Electronic interactions can have unexpected effects in even the simplest of materials. See what happens in few-layer graphene.
Here's the clip I promised :3 • Topological Insulators in a Nutshell ...
References:
1. Geim, A. K. & Novoselov, K. S. The rise of graphene. arXiv:cond-mat/0702595 (2007).
2. Peres, N. M. R. & Ribeiro, R. M. FOCUS ON GRAPHENE. New J. Phys. 11, 095002 (2009).
3. Fetter, A. L. & Walecka, J. D. Quantum theory of many-particle systems. (Dover Publications, 2003).
4. Ashcroft, N. W. & Mermin, N. D. Solid state physics. (Holt, Rinehart and Winston, 1976).
5. Wallace, P. R. The Band Theory of Graphite. Phys. Rev. 71, 622–634 (1947).
6. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
7. Schwartz, M. D. Quantum field theory and the standard model. (Cambridge University Press, 2014).
8. Koshino, M. & Ando, T. Orbital diamagnetism in multilayer graphenes: Systematic study with the effective mass approximation. Phys. Rev. B 76, 085425 (2007).
9. Yagi, R. et al. Low-energy band structure and even-odd layer number effect in AB-stacked multilayer graphene. Sci Rep 8, 13018 (2018).
10. McCann, E. & Fal’ko, V. I. Landau-Level Degeneracy and Quantum Hall Effect in a Graphite Bilayer. Phys. Rev. Lett. 96, 086805 (2006).
11. Nam, Y., Ki, D.-K., Soler-Delgado, D. & Morpurgo, A. F. A family of finite-temperature electronic phase transitions in graphene multilayers. Science 362, 324–328 (2018).
12. Nam, Y., Ki, D.-K., Koshino, M., McCann, E. & Morpurgo, A. F. Interaction-induced insulating state in thick multilayer graphene. 2D Mater. 3, 045014 (2016).
13. Vafek, O. & Yang, K. Many-body instability of Coulomb interacting bilayer graphene: Renormalization group approach. Phys. Rev. B 81, 041401 (2010).
14. Min, H., Borghi, G., Polini, M. & MacDonald, A. H. Pseudospin magnetism in graphene. Phys. Rev. B 77, 041407 (2008).
15. Koshino, M. & McCann, E. Parity and valley degeneracy in multilayer graphene. Phys. Rev. B 81, 115315 (2010).
16. Wang, E. et al. Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride. Nature Phys 12, 1111–1115 (2016).
17. Hunt, B. et al. Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure. Science 340, 1427–1430 (2013).
18. Weitz, R. T., Allen, M. T., Feldman, B. E., Martin, J. & Yacoby, A. Broken-Symmetry States in Doubly Gated Suspended Bilayer Graphene. Science 330, 812–816 (2010).
19. Ohta, T. et al. Interlayer Interaction and Electronic Screening in Multilayer Graphene Investigated with Angle-Resolved Photoemission Spectroscopy. Phys. Rev. Lett. 98, 206802 (2007).
#VTuber #Physics #Graphene
Информация по комментариям в разработке