Presentation 15: An Introduction to Parameter Estimation: Technological Companion

Описание к видео Presentation 15: An Introduction to Parameter Estimation: Technological Companion

This is the technological companion to the video lesson titled: An Introduction to Parameter Estimation (   • Presentation 15: An Introduction to P...  ).


In this tutorial, apply MATLAB's mle (Maximum Likelihood Estimation) function to the problem of estimating unknown parameters of the binomial, geometric, and Poisson distributions. We estimate the, unknown parameters of the hypergeometric distributions by implementing our own, method of moments based approach to mark and recapture in MATLAB. Finally, we also use mle to explore one example of estimating the mean and standard deviation parameters of the normal distribution.

This video lesson supports the Probability and Statistics Core Learning Resource (CLR) (https://mathsciresearchlaunchpad.word...) at the Mathematical Science Research Launchpad.

Resources:
________________

GitHub repository containing Matlab scripts and LiveScripts used in this tutorial: https://github.com/wrightes-msrl/Para...

Комментарии

Информация по комментариям в разработке