Metabolism of Arginine and Beta Alanine : Medical biochemistry

Описание к видео Metabolism of Arginine and Beta Alanine : Medical biochemistry

📌 𝐅𝐨𝐥𝐥𝐨𝐰 𝐨𝐧 𝐈𝐧𝐬𝐭𝐚𝐠𝐫𝐚𝐦:-   / drgbhanuprakash  

Metabolism of Arginine and Beta Alanine : Medical biochemistry

Arginine has multiple metabolic fates and thus is one of the most versatile amino acids. Not only is it metabolically interconvertible with the amino acids proline and glutamate, but it also serves as a precursor for synthesis of protein, nitric oxide, creatine, polyamines, agmatine, and urea. These processes do not all occur within each cell but are differentially expressed according to cell type, age and developmental stage, diet, and state of health or disease. Arginine metabolism also is modulated by activities of various transporters that move arginine and its metabolites across the plasma and mitochondrial membranes. Moreover, several key enzymes in arginine metabolism are expressed as multiple isozymes whose expression can change rapidly and dramatically in response to a variety of different stimuli in health and disease. As illustrated by the questions raised in this article, we currently have an imperfect and incomplete picture of arginine metabolism for any mammalian species. It has become clear that a more complete understanding of arginine metabolism will require integration of information obtained from multiple approaches, including genomics, proteomics, and metabolomics.

Beta-alanine, 3-aminopropanoic acid, is a non-essential amino acid. Beta-Alanine is formed by the proteolytic degradation of beta-alanine containing dipeptides: carnosine, anserine, balenine, and pantothenic acid (vitamin B5). These dipeptides are consumed from protein-rich foods such as chicken, beef, pork, and fish. Beta-Alanine can also be formed in the liver from the breakdown of pyrimidine nucleotides into uracil and dihydrouracil and then metabolized into beta-alanine and beta-aminoisobutyrate. Beta-Alanine can also be formed via the action of aldehyde dehydrogenase on beta-aminoproionaldehyde which is generated from various aliphatic polyamines. Under normal conditions, beta-alanine is metabolized to aspartic acid through the action of glutamate decarboxylase. It addition, it can be converted to malonate semialdehyde and thereby participate in propanoate metabolism. Beta-Alanine is not a proteogenic amino acid. This amino acid is a common athletic supplementation due to its belief to improve performance by increased muscle carnosine levels.

#arginine #betaalanine #aminoacids #aminoacidmetabolism #biochemistry #biochemistryvideos #medicalbiochemistry #usmle #mbbs #neetpg #usmlestep1 #usmlepreparation #usmlevideos #nationalexittest #fmge 2#mbbslectures #nationalexitexam

Комментарии

Информация по комментариям в разработке