Proof: Cosets Partition the Group | Abstract Algebra

Описание к видео Proof: Cosets Partition the Group | Abstract Algebra

We prove, for a group G with subgroup H, the family of cosets Ha as a ranges over G, forms a partition of G. This means any two cosets Ha and Hb will be disjoint or equal, and also that every element of G is in a coset Ha. This is a significant but easily proven result. #abstractalgebra #grouptheory

Intro to Cosets in Group Theory:    • Cosets in Group Theory | Abstract Alg...  
Order of Cosets is the Same as Subgroup:    • Order of Cosets Equals Order of Subgr...  

Abstract Algebra Course:    • Abstract Algebra  
Abstract Algebra Exercises:

◉Textbooks I Like◉
Graph Theory: https://amzn.to/3JHQtZj
Real Analysis: https://amzn.to/3CMdgjI
Proofs and Set Theory: https://amzn.to/367VBXP (available for free online)
Statistics: https://amzn.to/3tsaEER
Abstract Algebra: https://amzn.to/3IjoZaO
Discrete Math: https://amzn.to/3qfhoUn
Number Theory: https://amzn.to/3JqpOQd

★DONATE★
◆ Support Wrath of Math on Patreon for early access to new videos and other exclusive benefits:   / wrathofmathlessons  
◆ Donate on PayPal: https://www.paypal.me/wrathofmath

Thanks to Petar, dric, Rolf Waefler, Robert Rennie, Barbara Sharrock, Joshua Gray, Karl Kristiansen, Katy, Mohamad Nossier, and Shadow Master for their generous support on Patreon!

Thanks to Crayon Angel, my favorite musician in the world, who upon my request gave me permission to use his music in my math lessons: https://crayonangel.bandcamp.com/

Follow Wrath of Math on...
● Instagram:   / wrathofmathedu  
● Facebook:   / wrathofmath  
● Twitter:   / wrathofmathedu  

My Math Rap channel:    / @mathbars2020  

Комментарии

Информация по комментариям в разработке