Structural Graph Theory Lecture-37

Описание к видео Structural Graph Theory Lecture-37

In today's lecture (13/10/2021):

We first discussed a few concepts: edge-colorings, proper edge-colorings, matchings and perfect matchings. In particular, we observed that, in a proper edge-coloring, each color class corresponds to a matching. Furthermore, in a proper k-edge-coloring of a k-regular graph (if one exists), each color class corresponds to a perfect matching.

Thereafter, we discussed Tait's equivalent formulation of the Four Color "Conjecture":

"Conjecture" 11.5: Every 3-connected cubic planar graph is 3-edge-colorable.

Tomorrow (14/10/2021), we complete the proof of Tait's Equivalence.

Комментарии

Информация по комментариям в разработке