How to Test if a Vector Field is Conservative // Vector Calculus

Описание к видео How to Test if a Vector Field is Conservative // Vector Calculus

A vector field is conservative if the line integral is independent of the choice of path between two fixed endpoints. We have previously seen this is equivalent of the Field being able to be written as the gradient of a scalar potential function. In this video we will derive a simple test to see whether a field is indeed conservative. We discover three equations that relate different partial derivatives of the components of the field, and if those equations are equal, then the field is conservative.

MY VECTOR CALCULUS PLAYLIST:
►VECTOR CALCULUS (Calc IV)    • Calculus IV: Vector Calculus (Line In...  

OTHER COURSE PLAYLISTS:
►DISCRETE MATH:    • Discrete Math (Full Course: Sets, Log...  
►LINEAR ALGEBRA:    • Linear Algebra (Full Course)  
►CALCULUS I:    • Calculus I (Limits, Derivative, Integ...  
► CALCULUS II:    • Calculus II (Integration Methods, Ser...  
►MULTIVARIABLE CALCULUS (Calc III):    • Calculus III: Multivariable Calculus ...  
►DIFFERENTIAL EQUATIONS:    • How to solve ODEs with infinite serie...  

OTHER PLAYLISTS:
► Learning Math Series
   • 5 Tips To Make Math Practice Problems...  
►Cool Math Series:
   • Cool Math Series  

BECOME A MEMBER:
►Join:    / @drtrefor  

MATH BOOKS & MERCH I LOVE:
► My Amazon Affiliate Shop: https://www.amazon.com/shop/treforbazett

SOCIALS:
►Twitter (math based):   / treforbazett  
►Instagram (photography based):   / treforphotography  

Комментарии

Информация по комментариям в разработке