Deficyt antymaterii - dlaczego istnieje raczej coś niż antycoś? | prof. Jan Kisiel

Описание к видео Deficyt antymaterii - dlaczego istnieje raczej coś niż antycoś? | prof. Jan Kisiel

📖 Poznaj nasze wydawnictwo: https://radionaukowe.pl/wydawnictwo
📚 Wygodne zakupy książek: https://wydawnictwoRN.pl

👉 Zostań Patronem: https://patronite.pl/radionaukowe
👉 Wesprzyj jednorazowo: https://suppi.pl/radionaukowe
🎧 Posłuchaj na streamingu: https://ffm.bio/radionaukowe
🔔 Subskrybuj:    / @radionaukowe  
🌐 Strona: https://radionaukowe.pl
👍 Facebook:   / radionaukowe  
📷 Instagram:   / radionaukowe  
❌ Twitter:   / radionaukowe  
🎓 Odwiedź LAMU:    / @letniaakademiamlodychumyslow  
🎬 Zobacz więcej:    • Radio Naukowe poleca  
📩 Kontakt: [email protected]

Dlaczego istnieje raczej coś niż nic? Z takim, niebanalnym przyznacie, pytaniem wybrałam się do Chorzowa, do prof. Jana Kisiela, lidera zespołu badawczego „Fizyka jądrowa w badaniach oddziaływań i jej zastosowania” w Instytucie Fizyki Uniwersytetu Śląskiego. - Jak się domyślam, zmierzamy do pytania o dlaczego mamy materię, a niemal nie mamy antymaterii? – profesor przejrzał mnie natychmiast.

Istotnie, zagadka jest jedną z największych współczesnej fizyki. – Wydaje się, że w czasie Wielkiego Wybuchu powinny powstać równe ilości materii i antymaterii. Dlaczego stało się inaczej? – mówi prof. Kisiel.

Tu warto sięgnąć do 1967 roku, kiedy to radziecki fizyk Andriej Sacharow napisał słynną, kilkustronicową pracę, znaną dziś jako warunki Sacharowa. – Zasugerował, że to, że obserwujemy obecnie olbrzymią przewagę materii nad antymaterią, jest spowodowane tym, że w czasie Wielkiego Wybuchu musiały być spełnione trzy warunki. Łamanie symetrii ładunkowo-przestrzennej (symetrii CP), ponadto niezachowanie liczby barionowej, to znaczy, to, że np. powinniśmy obserwować rozpad protonu. Oraz te procesy musiałyby zachodzić w sposób nierównowagowy, bo gdyby zachodziły w sposób równowagowy, to pewnie wszystko wróciłoby do stanu równowagi – wylicza prof. Kisiel.

Właśnie szczególnie sprawa tego pierwszego warunku: łamania symetrii ładunkowo-przestrzennej, szczególnie interesuje fizyka. O łamanie tej symetrii podejrzewane są neutrina i antyneutrina – W kwietniu 2020 roku eksperyment T2K (Super-Kamiokande) opublikował w bardzo prestiżowym czasopiśmie „Nature” artykuł, w którym wskazaliśmy na możliwość różnic w oscylacjach neutrin i antyneutrin wskazującą na łamanie symetrii CP – mówi prof. Kisiel. „Możliwość” jest tutaj słowem kluczowym, naukowcy chcą być bliżsi pewności. - Eksperymenty neutrinowe charakteryzują się tym, że jest obserwowanych bardzo mało przypadków oddziaływań neutrin. Dlatego trwa budowa kolejnego eksperymentu. Jest budowany nowy detektor, który będzie nazywał się Hyper-Kamiokande. Będzie on korzystał z tej samej wiązki neutrin, co detektor Super-Kamiokande, przy czym intensywność tej wiązki będzie zwiększona prawie dwa razy – wyjaśnia fizyk. Naukowiec jest zaangażowany w budowę detektora, który powstaje w Japonii.

W podcaście rozmawiamy o technicznych wyzwaniach eksperymentu (powstaje w środku góry…), o japońskiej kulturze pracy i tym dlaczego w okolicy nie ma wielkiej tabliczki z napisem „tutaj odkrywamy tajemnice Wszechświata”.

🚂 Podcast powstał w czasie podróży Radia Naukowego na Śląsk. Jeżdżę po Polsce z mikrofonami, żeby przedstawiać Wam naukowców z różnych ośrodków w jak najlepszej jakości dźwięku. Podróże są możliwe dzięki wsparciu na patronite.pl/radionaukowe 💛

POLECAMY INNE MATERIAŁY:
   • Radio Naukowe - Wszystkie odcinki  
   • Fizyka  
   • Biologia  
   • Astronomia  
   • Psychologia  
   • Zwierzęta  
   • Religia  
   • Historia  
   • Historia życia  
   • Geografia  
   • Technologia  
   • Człowiek  
   • Kultura  
   • Medycyna  
   • Archeologia  

🧠 Radio Naukowe - włącz wiedzę! 🧠

#RadioNaukowe #KarolinaGłowacka #JanKisiel

Комментарии

Информация по комментариям в разработке